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Collective Thomson scattering with extreme ultraviolet light or x rays is shown to allow for a robust
measurement of the free electron density in dense plasmas. Collective excitations like plasmons appear as
maxima in the scattering signal. Their frequency position can directly be related to the free electron density.
The range of applicability of the standard Gross-Bohm dispersion relation and of an improved dispersion
relation in comparison to calculations based on the dielectric function in random phase approximation is
investigated. More important, this well-established treatment of Thomson scattering on free electrons is gen-
eralized in the Born-Mermin approximation by including collisions. We show that, in the transition region from
collective to noncollective scattering, the consideration of collisions is important.
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I. INTRODUCTION

A key issue in the diagnostics of dense plasmas is the
determination of free electron density and temperature.
Physical properties such as line profiles, bremsstrahlung
spectrum, or Thomson scattering can be used for that pur-
pose. In this context, knowledge of the plasmon resonance is
necessary for the analysis of experimental data. Therefore,
we discuss the applicability of the Gross-Bohm dispersion
relation and options to go beyond it when considering the
determination of plasma parameters in warm dense matter
�WDM�, where many-particle effects like collisions play an
important role.

The region of WDM considered is relevant for, e.g., iner-
tial confinement fusion experiments or models for planetary
interiors. WDM is characterized by densities as typical for
the solid state and temperatures of several eV. These plasmas
are opaque in the optical region since the frequency of light,
�0=2�c /�0, is lower than the plasma frequency �pe

2

=nee
2 / ��0me� of the free electron subsystem, with electron

density ne and electron mass me. Therefore, probing plasmas
with densities approaching solids or even higher densities
requires x-ray sources.

Powerful x-ray pulses are produced by energetic optical
lasers �1� and then used to pump and probe samples in the
near-solid density regime. The 4.75-keV titanium He-�
backlighter �2,3� has been used to measure the noncollective
Thomson scattering spectrum on solid density beryllium.
From the shape of the Compton-shifted electron-scattering
signal, the electron temperature could be detected. In another
experiment, scattering from the collective electron plasma
mode �plasmon� at solid density beryllium using a Cl Ly-�
backlighter at 2.96 keV was performed �4�.

Alternatively, the study of WDM will eventually be pos-
sible with new fourth-generation light sources �free electron
lasers �FELs� in the vuv and x-ray regions� as a tool to probe
near-solid density targets. Currently available is the FLASH
facility at DESY, Hamburg, with wavelengths ranging from
7 to 50 nm in the vuv region �5,6�. The construction of an
x-ray FEL is planned at DESY �7,8� in 2013. A similar
project is currently under construction at the Stanford Linear
Acceleration Center �SLAC� �9�.

In plasmas at near-solid density, strong coupling effects
are important. In particular, a consistent many-body theory is
needed if the nonideality parameter �e for electrons,

�e =
e2

4��0kBTe
�4�ne

3
�1/3

, �1�

is larger than 1. The plasma parameters—i.e., the free elec-
tron temperature Te and the free electron density ne, as well
as the ionization state Z—can be derived analyzing the
Thomson-scattering signal. The electron temperature can be
obtained using the method of detailed balance �4,10�, while
the electron density follows from the plasmon dispersion re-
lation for collective scattering. In this paper, we discuss the
measurement of the free electron density via the maximum
position of the plasmon peak. We compare with the usual
Gross-Bohm �11� dispersion relation �GB�k�. Furthermore,
we analyze the improved dispersion relation �IDR� �10� ac-
counting for higher-density effects, characterized by the de-
generacy parameter �e for electrons,

�e =
2mekBTe

�2 �3�2ne�−2/3, �2�

and higher orders of the scattering wave number. In Ref.
�12�, analytic results for the dynamic structure factor as the
basic input for the Thomson-scattering cross section on the*robert.thiele@uni-rostock.de
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level of the random phase approximation �RPA� were shown.
Recently, the influence of electron-ion collisions on the dy-
namic structure factor �13� was studied in addition. A sys-
tematic improvement of the Born approximation including
dynamic screening, strong collisions, and electron-electron
collisions by a renormalization factor of the collision fre-
quency �14,15� has been accomplished by the use of thermo-
dynamic Green’s functions leading to the Gould-DeWitt �16�
scheme. This can be extended to finite wave numbers k by
the Mermin approach �17–19� in order to calculate the dy-
namic structure factor. In this way electron-ion collisions as
well as electron-electron collisions have been accounted for
in our approach.

For the interpretation and evaluation of state-of-the-art
plasma experiments, accurate measurements of the
Thomson-scattering signal are needed. Therefore, the scatter-
ing of photons on plasmas has been studied for a long time
�20–24�. We will show that Thomson scattering can indeed
serve as a reliable diagnostic tool to analyze plasma param-
eters such as, e.g., density, temperature, and plasma compo-
sition or to test the quality of the models used to determine
the dynamic structure factor.

In the next section, we introduce the dynamic structure
factor and the Born-Mermin approximation �BMA�. In Sec.
III, we study the position of the plasmon peak under the
influence of collisions. The Gross-Bohm plasmon dispersion
relation and the IDR are described in Sec. IV. The results for
solid density plasmas are shown in Sec. V. We will conclude
with a summary.

II. DYNAMIC STRUCTURE FACTOR

As described in �12,21,24,25�, the Thomson-scattering
cross section is related to the dynamic structure factor of all
electrons in the plasma according to

d2	

d
 d�
= 	T

k1

k0
See�k,�� . �3�

Here, 	T=6.65�10−29 m2 is the Thomson cross section, k0
and k1 are the wave numbers of the incident and scattered
light, and the energy and momentum transfers are given by
�E=��=��1−��0 and �k=�k1−�k0. The momentum is
related to the scattering angle  in the limit �����0 accord-
ing to k=4� sin�S /2� /�0, with scattering angle S and inci-
dent wavelength �0. Here, we follow Chihara’s approach
�21,24�, in that the total dynamic structure factor can be writ-
ten in terms of contributions from free electrons, weakly and
tightly bound electrons, and core electrons. In the present
paper, only the dynamic structure factor of free electrons is
considered.

In thermodynamic equilibrium, the dynamic structure fac-
tor See�k ,�� and the longitudinal dielectric function ��k ,��
are related via the fluctuation-dissipation theorem

See�k,�� = −
�0�k2

�e2ne

Im �−1�k,��

1 − exp�−
��

kBTe
� . �4�

A peak in the dynamic structure factor or in the imaginary
part of the inverse dielectric function,

Im �−1�k,�� =
− Im ��k,��

�Re ��k,���2 + �Im ��k,���2 , �5�

can be interpreted as a resonant charge density excitation or
plasmon. In general, the dielectric function is given in terms
of the polarization function ��k� ,�� via

��k�,�� = 1 −
1

�0k2��k�,�� . �6�

Neglecting collisions, the polarization function is given in
the RPA as

�RPA�k,�� =
1


0
�

p

e2 fp+k/2
e − fp−k/2

e

�Ep,k
e − ��� + i��

. �7�

Here, 
0 is the normalization volume and �Ep,k
e =Ep+k/2

e

−Ep−k/2
e =�2k ·p /me. Furthermore, fp

e = �exp�Ep
e −�e� /kBTe

+1�−1 denotes the Fermi distribution function and �e is the
chemical potential of electrons. The limit �→0 has to be
taken after the thermodynamic limit.

We improve the RPA by considering collisions and as-
sume a Drude-like behavior for the damping of the
frequency-dependent dielectric function via a collision fre-
quency. Within linear response theory �19�, the dynamic col-
lision frequency ���� can be consistently introduced via the
Mermin dielectric function

�M�k,�� − 1 =
�1 + i

����
�

���RPA
„k,� + i����… − 1�

1 + i
����

�

�RPA
„k,� + i����… − 1

�RPA�k,0� − 1

. �8�

In �13,25�, the influence of collisions on the dynamic struc-
ture factor was investigated for a wide range of temperatures
and densities applying various approximations. In the so-
called Born-Mermin approximation, we will evaluate the
collision frequency in Born approximation with respect to a
statically screened Debye potential which can be written
�10,14,15� as

�Born��� = − i
�0ni
0

2

6�2e2neme

1

�
�

0

�

dqq6VD
2 �q�Sii�q�

� ��RPA�q,�� − �RPA�q,0�� , �9�

with Sii�q� being the static ion-ion structure factor and
VD�q�=−Ze2 / ��0
0�q2+�2�� the statically screened electron-
ion Debye potential. � is the inverse screening length in the
plasma, which is given for plasmas at any degeneracy by

�2 =
e2me

3/2

	2�2�0�3�
0

�

dEpEp
−1/2fp

e . �10�

In the classical case, the well-known inverse Debye
screening �D

2 =nee
2 / ��0kBTe� is obtained. The static ion-ion
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structure factor Sii�q� accounts for ion correlations, which are
particularly important in highly ionized materials. Here, we
use Sii=1 for an isotropic ion background. For improved
expressions of Sii�q�, see �26–28�.

For applications to scattering experiments in WDM, the
range of the wave number k of interest is given by the ex-
perimental setup. It allows us to discriminate between col-
lective and noncollective scattering. Therefore, to further
analyze the structure factor and Thomson scattering, the scat-
tering parameter �29�

� =
�

k
�11�

is introduced. For ��1, the scattering is noncollective, and
we can investigate short-range correlations within the Debye
sphere �1�. Long-range correlations are relevant for collec-
tive scattering ���1�. In this case, the electronic structure
factor See�k ,�� shows two particularly pronounced side
maxima, found symmetrically to the central Rayleigh peak,
which are related to the free electron density; see also �4�. In
the following, we will restrict ourselves to the redshifted left
peak since it is the one with the higher intensity.

In Fig. 1, the electronic dynamic structure factor See�k ,��
in the RPA and BMA is shown for different conditions. For
the lowest temperature �T=0.5 eV�, we compare the RPA
with the BMA calculations. The collisions broaden the struc-
ture factor and shift the left maximum of See�k ,�� to higher
frequencies. For higher temperatures, the differences be-
tween the RPA and BMA become smaller. Therefore, we
show only the BMA calculations for the higher temperatures.
More details of the influence of the collisions for a wide
range of electron densities and temperatures are given in
�13,25�. For collective scattering ��=2.0�, we see a sharp
peak near the electronic plasma frequency �pe. For noncol-
lective scattering ��=0.5�, only one maximum of See�k ,�� is
found and the peak is broadened due to thermal electronic

motion. Within our approach, we now consider collective
scattering with a scattering parameter ��1. We will present
results for the dielectric function in the Born-Mermin ap-
proximation, where the maximum position �res from
See�k ,�� is determined numerically as a function of density
and temperature. Nevertheless, it is useful for plasma diag-
nostics to have analytical estimates for the peak position. We
will aim at an improved plasmon dispersion relation below.

III. POSITION OF THE PLASMON PEAK
IN THE DRUDE LIMIT

In the following, we will discuss the position of the maxi-
mum in the dynamic structure factor See�k ,�� which is due
to a redshift of the probing frequency and is related to the
imaginary part of the inverse dielectric function according to
Eq. �4�. In the collective regime, the maximum position is
the so-called plasmon peak or plasmon resonance. For strong
collective scattering ���1�, it is the long-wavelength limit
�k→0�.

In Fig. 2, the real and imaginary parts of the dielectric
function as well as the imaginary part of the inverse dielec-
tric function, all calculated within the RPA via Eqs. �6� and
�7�, are shown for weakly collective ��=1.1� and collective
��=2.1� scattering. For �=2.1, the real part of the dielectric
function has four zeros symmetrically positioned with re-
spect to the plasma frequency. The plasmon peak of interest
can be found at the zero of Re ��k ,�� with the highest abso-
lute value of the frequency shift, because the imaginary part
is minimal. Here, a narrow sharp peak of Im �−1�k ,�� is
obtained, typical for collective scattering. In the other case,
for �=1.1, a zero of the real part of the dielectric function
does not exist.
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FIG. 1. �Color online� Electronic dynamic structure factor
See�k ,�� from collective ��=2.0� up to noncollective ��=0.5� Th-
omson scattering calculated in the RPA �black-dotted line� for Te

=0.5 eV and BMA �Te=0.5, 2.0, 8.0 eV� for a fully ionized hydro-
gen plasma with ne=1021 cm−3, a laser wavelength �0=4.13 nm,
and a scattering angle S=160°.
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FIG. 2. �Color online� Dielectric function �RPA�k ,�� of elec-
trons for electron densities: �a� ne=1.0�1023 cm−3 ��=1.1� and �b�
ne=5.0�1023 cm−3 ��=2.1�. The electron temperature is Te

=12 eV, laser wavelength �0=0.42 nm, and the scattering angle
S=40°.
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For an estimate of the influence of collisions, we discuss
the position of the plasmon peak within the Drude model
�30,31�, obtained from the Mermin formula, Eq. �8�, in the
long-wavelength limit:

lim
k→0

�M�k,�� = ���� = 1 −
�pe

2

��� + i�����
. �12�

In the case of a static collision frequency �=��0� and Im �
=0, the real and imaginary parts of the dielectric function are
given by

Re ���� =
�2 + �2 − �pe

2

�2 + �2 , Im ���� =
�

�

�pe
2

�2 + �2 . �13�

As a result, the imaginary part of the inverse dielectric func-
tion can be written in the following form:

Im �−1��� =
���pe

2 ��2 + �2�
�2��2 + �2 − �pe

2 �2 + �2�pe
4 . �14�

According to Eq. �4�, the maximum position of See�k ,�� can
then be found at

�res
2 
 �pe

2 −
�2

4
, �15�

assuming ���pe. Thus, the plasmon peak is expected to
shift due to collisions. In �25�, the static collision frequency,
normalized by the electronic plasma frequency, was shown
for a wide range of free electron densities.

In contrast to Eq. �15�, an estimate of the maximum po-
sition of See�k ,�� from the dispersion relation Re ����=0,
Eq. �13�, leads to

�0
2 = �pe

2 − �2 = �pe
2 �1 −

�2

�pe
2 � = �pe

2 ��. �16�

In Table I, we show the fraction � /�pe and the deviation of
the electronic plasma frequency �� for the interesting range
of electron densities and temperatures. It is found that �

�pe only in the density region of ne=1021 cm−3 if typical

temperatures for WDM are considered. Otherwise, ���pe
�13� applies.

In conclusion, the shift of the plasmon peak is a function
of � /�pe for both expressions. For ���pe, the effect of col-
lisions on the position of the plasmon peak can be neglected,
as we will see later in the numerical results.

IV. PLASMON DISPERSION RELATION

Plasmons can be found as poles of 1 /��k ,z� in the lower
complex half plane �Im z�0� �32�. There are no general ana-
lytical results available, however. Assuming small
Im ��k ,��, the peak is essentially determined by the solution
of the dispersion relation

�Re ��k,����=�0�k� = 0 �17�

or, at least, by a minimum of Re ��k ,��. Considering the
case of the RPA, we present plasmon dispersion relations in
different approximations.

Starting from the Lindhard formula �see Eq. �7��, the real
part of the dielectric function can be written as �33�

Re ��k,�� = 1 −
�pe

2

�2 � �1 +
z2

u2 +
3

2

F3/2���
u2D5/2 +

3

2

F5/2���
u4D7/2 + ¯  �18�

for z�u, with u=� /kvF, z=k /2kF, �=�e /kBTe, and D=1 /�e. The velocity vF corresponds to the Fermi wave number kF
=mevF /�= �3�2ne�1/3. The Fermi integrals Fj�x� are defined by Eq. �A3�. From z�u, the condition k2�2me� /� is derived.
Since we are interested in the behavior at �pe, this limits the applicability of Eq. �18� to the wave number k

k2 �
2me

�
	 e2ne

�0me
. �19�

From this, a minimum density nmin=�2k4�0 / �4mee
2� follows for an experimental setup with given wave number k. Assuming

the approximation �18�, the dispersion relation �17� for the RPA is solved by

�0
2�k� = �pe

2 �1 +
�p2�
me

2

k2

�0
2�k�

+ � �

2me
�2 k4

�0
2�k�

+
�p4�
me

4

k4

�0
4�k�

+ ¯  , �20�

TABLE I. Static collision frequency in the Born approximation,
normalized by the electronic plasma frequency for a wide range of
the electron density-temperature plane. �� describes the deviation of
the electronic plasma frequency �pe via Eq. �16�.

ne �cm−3� Te �eV� � /�pe ��

1021 0.5 0.654 0.573

3.0 0.397 0.843

12.0 0.101 0.990

1022 0.5 0.098 0.990

3.0 0.404 0.837

12.0 0.183 0.967

1023 2.0 0.082 0.993

6.0 0.222 0.951

12.0 0.215 0.954
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with the moments �pi� related to the Fermi integrals defined
by Eq. �A1�.

In the classical limit ���1�, �p2�=3kBTeme, and by ne-
glecting terms beyond the order of k2, we obtain the well-
known Gross-Bohm dispersion relation �11�

�GB
2 �k� = �pe

2 +
3kBTe

me
k2. �21�

The plasmon resonance �GB in the Gross-Bohm relation is
approximated by the electron plasma frequency �pe and an
additional term which depends on electron temperature and
scattering wave number only.

For a weakly degenerate electron gas with �
1, the
Fermi integrals can be expanded �see Eq. �A4��. Considering
quantum diffraction and the third term in Eq. �20�, we derive
the IDR

�IDR
2 = �pe

2 +
3kBTe

me
k2�1 + 0.088ne�e

3� + � �k2

2me
�2

. �22�

The last term in Eq. �20� is in order of k4 and �−4. This effect
can be neglected for the densities and wave numbers inves-
tigated. In comparison to the Gross-Bohm dispersion rela-
tion, the range of applicability is extended to higher wave
numbers �larger scattering angles� and higher densities �or
lower temperatures�.

V. RESULTS FOR WDM

We will now compare the position of the maximum �E
=��res of the dynamic structure factor See�k ,�� in BMA �see
Eqs. �4�–�9��, with the well-known Gross-Bohm dispersion
relation �GB�k�, Eq. �21�, for typical FLASH wavelengths
�0= �32.0,13.5,6.0� nm.

First, we calculate these quantities for a fully ionized hy-
drogen plasma in the electron density range ne
= �1021–1024� cm−3 with two different electron temperatures
Te=1 eV and Te=20 eV �see Fig. 3�. These conditions are
relevant for collective Thomson-scattering experiments at
FLASH �10�. The scattering setup with the laser wavelength
�0 and the scattering angle S was chosen for a wide range of
wave numbers k available at FLASH. For the highest wave-
length �0=32 nm, the differences between the Gross-Bohm
relation and the BMA are very small. The second term in Eq.
�21� can be neglected, because the wave number is small. For
these conditions, the maximum position of See�k ,�� can be
found at the electron plasma frequency �pe, and it is inde-
pendent of the electron temperature Te. The limit of the den-
sity nmin is orders of magnitude smaller than the lowest den-
sity ne=1021 cm−3 �see Table II�.

In the intermediate-wavelength region ��0=13.5 nm�,
small differences occur between Te=1 eV and Te=20 eV for
smaller densities �see Fig. 3�. The wave number increases,
and the temperature dependence due to the second term in
Eq. �21� becomes important. The Gross-Bohm dispersion re-
lation is valid; the limiting density nmin is still orders of
magnitude smaller than the densities investigated.

For the lowest wavelength �0=6 nm, the temperature de-
pendence of the energy shift is pronounced for a wide den-

sity range. The second term in Eq. �21� becomes more im-
portant. Furthermore, the Gross-Bohm dispersion relation
differs strongly from the BMA for Te=20 eV in the lower-
density range ne=1021–1022 cm−3. Here, the limit of appli-
cability of the dispersion relation �20� is clearly visible.

We have shown that for the wavelengths available at
FLASH, the Gross-Bohm dispersion relation yields good re-
sults for the determination of the free electron density via the
energy shift of the Thomson-scattering signal. The tempera-
ture becomes important at lower densities; the resonance fre-
quency can be found near the electron plasma frequency.
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FIG. 3. �Color online� Comparison of the maximum position �E
of See�k ,�� in the BMA �solid lines� with the energy shift �GB�k�
�dashed lines� as a function of the electron density ne for a fully
ionized hydrogen plasma at electron temperatures Te=1 eV �black
lines� and Te=20 eV �red lines�. The scattering setup for the differ-
ent wave numbers k is given in Table II.
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With increasing wave number k or decreasing wavelengths,
the differences between the Gross-Bohm relation and the
BMA become larger.

Now, we will study the applicability of the dispersion re-
lation for x-ray Thomson scattering. A beryllium plasma has
been produced and investigated in pump-probe experiments
at the Omega laser facility �4,34� with wavelength �0
=0.42 nm in the x-ray region. Electron temperatures of Te
=12 eV were obtained and the scattering signal was ob-
served for different angles and wave numbers.

Figure 4 shows the energy shift of the maximum of the
Thomson-scattering signal for different free electron densi-
ties depending on wave number k and scattering angle S.
The wave numbers are more than 5 times larger than in the
FLASH region �see also Table II�. For these wave numbers
and for the plasma parameters of interest, the IDR has to be
used instead of the Gross-Bohm dispersion relation, because
the second term in Eq. �20� becomes important. The scatter-
ing parameter � decreases with increasing wave number or
scattering angle and decreasing electron density. For ne
=1.0�1023 cm−3, the scattering parameter varies from �
=1.5 to �=0.5 for given scattering angles S=30° –90°, re-

spectively. Obviously, for higher wave numbers and angles,
the limit of applicability of the IDR is reached where the
IDR crosses the BMA. Therefore, the differences between
the IDR and BMA are significant for higher wave numbers
and towards lower densities. Furthermore, for S�40°, the
scattering is noncollective. In this region, the BMA is supe-
rior to the RPA; there are slight differences between the
BMA and RPA.

It would be very helpful for an evaluation of experiments
to derive a fit formula for the BMA calculations of the maxi-
mum position �E �in eV� as a function of the electron den-
sity ne at a given temperature T. Here, we give an example
for the wave number k=1.02 Å−1 corresponding to �0
=0.42 nm in Table II. Fit parameters for other wave numbers
are available upon request. Defining a decadic logarithm of
the density x=log10�ne /n0� with a reference density of n0
=1020 cm−3, the maximum position is obtained from

�E = a0 + a1x + a2x2 + a3x3 + a4
	x . �23�

The temperature-dependent coefficients are given by

a0�T� = 223.3 − 23.8T ,

a1�T� = 344.0 − 37.7T ,

a2�T� = − 55.9 − 6.00T ,

a3�T� = 5.64 − 0.52T ,

a4�T� = − 512.7 + 56.0T ,

with T in eV. The fit reproduces the BMA maximum position
within an accuracy of 1% for temperatures between 1 eV and
20 eV and densities between 1021 cm−3 and 1024 cm−3.

Next, we study the applicability of the Gross-Bohm �GB�
relation and IDR for a given Thomson-scattering experiment
�4� in the solid density region and for x-ray wavelengths. In
Fig. 5, the dependence of the maximum position of See�k ,��
in the RPA and BMA on the free electron density is shown,
together with the energy shift in the IDR and Gross-Bohm
relation and the zeros of the real part of the dielectric func-
tion in the RPA. In addition, we compare with results follow-
ing from the dielectric function which was calculated includ-
ing local field corrections �LFCs� �35� and an experimental
point taken from �4�. In the considered density range, the
differences between the structure factor calculations and the
dispersion relations are considerable. For densities smaller
than ne=2.8�1023 cm−3, the scattering parameter � is lower
than 1, and zeros of Re ��k ,�� do not exist. Again, the GB
relation and IDR are not applicable. The shift of the maxi-
mum position obtained from the BMA is smaller compared
to the RPA due to the relevance of collisions in this region.

For higher densities �ne�4.0�1023 cm−3�, the maximum
position is not affected by collisions. The BMA and RPA
give the same result. For the strongly collective regime, the
zeros of the real part of the dielectric function can be found
at the same energy as the maximum position of See�k ,��. For
the highest densities and collective scattering, the difference
between the Gross-Bohm dispersion relation and BMA is

TABLE II. Exemplary experimental setup with the laser wave-
length �0, the scattering angle S, and the corresponding wave num-
ber k. The density nmin describes the lower limit of the electron
density for the validity of the Gross-Bohm dispersion relation.

�0 �nm� S k �Å−1� nmin �cm−3�

32.0 90° 0.028 1�1016

13.5 90° 0.066 3�1017

6.0 160° 0.206 2�1019

0.42 40° 1.020 1�1022

30 40 50 60 70 80 90

θS

10

20

30

40

50

∆E
[e

V
]

1 1.5 2

k [Å
-1

]

10

20

30

40

50

∆E
[e

V
]

BMA
RPA
IDR

1.0x10
23

3.0x10
23

6.0x10
23

ne [cm
-3

]

FIG. 4. �Color online� Comparison of the maximum position �E
of See�k ,�� in the RPA �dotted line� and BMA �solid line� with the
energy shift of the IDR �dashed line� in dependence on wave num-
ber k and scattering angle S, respectively, for Thomson scattering
on beryllium plasma with Zeff=2.5, ne= �1.0,3.0,6.0��1023 cm−3,
Te=12 eV, and laser wavelength �0=0.42 nm.
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approximately 4 eV. The improved dispersion relation with
respect to quantum effects underestimates the energy shift by
about 2 eV. These differences are significant; a few eV shift
leads to an error of more than 30% in the free electron den-
sity.

VI. SUMMARY

We have discussed the plasmon resonance position of the
dynamic structure factor See�k ,��, the usual Gross-Bohm
dispersion relation, and an improved dispersion relation. This
is relevant for the determination of the free electron density
in WDM. We have calculated the energy shift observed for
the FLASH wavelength region. The differences between the
Gross-Bohm dispersion relation and the maximum position
of the dynamic structure factor in the BMA are small. The
BMA is only needed for the determination of the free elec-
tron density with wavelengths near �0=6 nm and lower den-
sities. For solid targets probed by x rays, the density should
be calculated from the maximum position of See�k ,�� in the
BMA. In this region, simple dispersion relations �GB and
IDR� are not applicable.

We conclude that collision effects are important �13� in
WDM and can be considered within the BMA. A reliable
density determination can only be done by numerically solv-

ing the BMA and inspecting the poles of Im �−1�k ,��. A
simple analytical fit formula for the position of the plasmon
can be given for any laser wavelength.
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APPENDIX

We discuss the calculation of Eq. �20�. The prefactors �pi�
are defined as �33�

�pi� =
2

ne
� d3p

�2��3 pife�p� . �A1�

The prefactor �p2� of the k2 term in Eq. �20� is proportional
to the mean energy of the �ideal� Fermi system and allows
one, therefore, to incorporate quantum statistical corrections.
Especially, we have

�p2� =
3

2
kBTe

1

y
F3/2�x� , �A2�

with the parameter y=ne�e
3 /2, the thermal wavelength �e

=h /	2�mekBTe, x=��, and the Fermi integrals

Fj�x� =
1

��j + 1��0

� tj dt

et−x + 1
. �A3�

In order to supply the reader with tractable expressions
�36,37�, we give the following result:

F3/2�y�=�y + 0.1768y2 − 0.0033y3 + 0.000094y4, y � 5.5,

0.4836y5/3 + 1.3606y1/3 − 1.7y−1, y � 5.5.
�

�A4�

The parameter y can be estimated from y
=0.1656�ne /1021 cm−3� / �kBTe /eV�3/2. For the conditions of
solid density beryllium �4�, y�2, one can use 1 /yF3/2�y�
=1+0.1768y with an accuracy of better than 1%. With Eq.
�A4�, Eq. �20� can be solved to the order of k4, and we get
Eq. �22�.
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FIG. 5. �Color online� Comparison of the maximum position �E
of See�k ,�� in the RPA �green-dashed line� and BMA �black-solid
line� with the energy shift in the GB dispersion relation �blue dash-
dotted line� and IDR �red dash-dotted line� and local field correc-
tions �LFC: orange dotted line� �35� in dependence on electron den-
sity ne for a beryllium plasma with Zeff=2.5, Te=12 eV, and laser
wavelength �0=0.42 nm and scattering angle S=40°. The green
points are the zeros of Re ��k ,��, and the experimental point is
taken from �4�.
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